Tamiflu Swan Song?: Building Resistance to Top Avian Flu Drug

نویسنده

  • Cynthia Washam
چکیده

As the WHO has begun warning of the potential for an avian flu pandemic, governments worldwide have been stockpiling Tamiflu (oseltamivir phosphate). Tamiflu minimizes flu symptoms and duration by preventing the virus from escaping the cells it infects. It also reduces the likelihood of spreading the virus. Now British researchers are predicting that heavy use of Tamiflu, as during a pandemic, will expose wild waterfowl to enough of the antiviral agent to foster a resistant strain [EHP 115:102–106; Singer et al.]. The risk that Tamiflu will promote a resistant virus comes from the drug’s excreted metabolite, oseltamivir carboxylate (OC), which is in fact the active antiviral. Up to 80% of ingested Tamiflu is excreted as OC in urine and feces. OC withstands degradation through sewage treatment and for several weeks afterward. Birds drinking water from catchments contaminated with OC would ingest the antiviral, which would inhibit nonresistant viruses in the birds’ digestive systems while enabling resistant viruses to proliferate. Birds excreting the resistant virus would spread the strain among other waterfowl at the same body of water. To estimate birds’ exposure to OC, Singer and his colleagues examined data on OC’s biodegradability along with measurements of wastewater discharges into 16 major catchment areas in the United States and the United Kingdom. They estimated the number of flu cases in an outbreak within each catchment. Among other suppositions, the researchers assumed that all cases were treated with a standard five-day regimen of Tamiflu. The team calculated that the most vulnerable catchment in the United States is the Lower Colorado, where they predicted OC concentrations high enough to promote Tamiflu resistance in the virus for up to eight weeks. The most vulnerable British catchment would be the Lee catchment in northeast London. Resistant strains could proliferate within a week after pandemic starts in a region, assuming all patients start taking Tamiflu as soon as they develop symptoms. The authors also note that the range of predicted concentrations could have yet-uncharacterized ecotoxicologic effects. Singer and colleagues call for more detailed modeling of OC water contamination, particularly in Asia, where the virus is most prevalent and human-to-wildfowl contact is more common. They also recommend studies of ways to minimize the release of OC into waterways, which could include biological and chemical pretreatment in the toilet bowl. –Cynthia Washam Release and catch. Release of excreted Tamiflu into the environment could create drug-resistant strains of avian flu in wild waterfowl.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Dynamics Simulations Suggest that Electrostatic Funnel Directs Binding of Tamiflu to Influenza N1 Neuraminidases

Oseltamivir (Tamiflu) is currently the frontline antiviral drug employed to fight the flu virus in infected individuals by inhibiting neuraminidase, a flu protein responsible for the release of newly synthesized virions. However, oseltamivir resistance has become a critical problem due to rapid mutation of the flu virus. Unfortunately, how mutations actually confer drug resistance is not well u...

متن کامل

Molecular modeling of swine influenza A/H1N1, Spanish H1N1, and avian H5N1 flu N1 neuraminidases bound to Tamiflu and Relenza

A molecular model of the swine influenza A/H1N1 type-I neuraminidase was built using the pathogenic avian H5N1 type-I neuraminidase as a basis, due to the higher sequence identity between A/H1N1 and H5N1 (91.47%) compared to Spanish H1N1 (88.37%) neuraminidase. All-atom molecular dynamics (MD) simulations of all three neuraminidases were performed, either as apo-structures or with commercial an...

متن کامل

Molecular modeling of swine influenza A/H1N1, Spanish H1N1, and avian H5N1 flu N1 neuraminidases bound to Tamiflu and Relenza Œ PLOS Currents Influenza

A molecular model of the swine influenza A/H1N1 ( also called H1N1pdm) type-I neuraminidase was built using the pathogenic avian H5N1 type-I neuraminidase as a basis, due to the higher sequence identity between A/H1N1 and H5N1 (91.47%) compared to Spanish H1N1 (88.37%) neuraminidase. All-atom molecular dynamics (MD) simulations of all three neuraminidases were performed, either as apo-structure...

متن کامل

Insights from investigating the interaction of oseltamivir (Tamiflu) with neuraminidase of the 2009 H1N1 swine flu virus.

The neuraminidase (NA) of influenza virus is the target of anti-flu drugs oseltamivir and zanamivir. Clinical practices showed that oseltamivir was effective to treat the 2009-H1N1 influenza but failed to the 2006-H5N1 avian influenza. To perform an in-depth analysis on such a drug-resistance problem, the 2009-H1N1-NA structure was developed. To compare it with the crystal 2006-H5N1-NA structur...

متن کامل

Conformation and Linkage Studies of Specific Oligosaccharides Related to H1N1, H5N1, and Human Flu for Developing the Second Tamiflu

The interaction between viral HA (hemagglutinin) and oligosaccharide of the host plays an important role in the infection and transmission of avian and human flu viruses. Until now, this interaction has been classified by sialyl(α2-3) or sialyl(α2-6) linkage specificity of oligosaccharide moieties for avian or human virus, respectively. In the case of H5N1 and newly mutated flu viruses, classif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 115  شماره 

صفحات  -

تاریخ انتشار 2007